Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 207
Filtrar
1.
bioRxiv ; 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37333074

RESUMO

Chronic pain often alternates between transient remission and relapse of severe pain. While most research on chronic pain has focused on mechanisms maintaining pain, there is a critical unmet need to understand what prevents pain from re-emerging in those who recover from acute pain. We found that interleukin (IL)-10, a pain resolving cytokine, is persistently produced by resident macrophages in the spinal meninges during remission from pain. IL-10 upregulated expression and analgesic activity of δ-opioid receptor (δOR) in the dorsal root ganglion. Genetic or pharmacological inhibition of IL-10 signaling or δOR triggered relapse to pain in both sexes. These data challenge the widespread assumption that remission of pain is simply a return to the naïve state before pain was induced. Instead, our findings strongly suggest a novel concept that: remission is a state of lasting pain vulnerability that results from a long-lasting neuroimmune interactions in the nociceptive system.

2.
Brain Behav Immun ; 112: 220-234, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37315702

RESUMO

Originally identified in fibroblasts, Protease Inhibitor (PI)16 was recently shown to be crucial for the development of neuropathic pain via effects on blood-nerve barrier permeability and leukocyte infiltration, though its impact on inflammatory pain has not been established. Using the complete Freund's Adjuvant inflammatory pain model, we show that Pi16-/- mice are protected against sustained inflammatory pain. Accordingly, intrathecal delivery of a PI16 neutralizing antibody in wild-type mice prevented sustained CFA pain. In contrast to neuropathic pain models, we did not observe any changes in blood-nerve barrier permeability due to PI16 deletion. Instead, Pi16-/- mice display reduced macrophage density in the CFA-injected hindpaw. Furthermore, there was a significant bias toward CD206hi (anti-inflammatory) macrophages in the hindpaw and associated dorsal root ganglia. Following CFA, intrathecal depletion of CD206+ macrophages using mannosylated clodronate liposomes promoted sustained pain in Pi16-/- mice. Similarly, an IL-10 neutralizing antibody also promoted sustained CFA pain in the Pi16-/ when administered intrathecally. Collectively, our results point to fibroblast-derived PI16 mediating substantial differences in macrophage phenotype in the pain neuroaxis under conditions of inflammation. The co-expression of PI16 alongside fibroblast markers in human DRG raise the likelihood that a similar mechanism operates in human inflammatory pain states. Collectively, our findings may have implications for targeting fibroblast-immune cell crosstalk for the treatment of chronic pain.


Assuntos
Dor Crônica , Neuralgia , Camundongos , Humanos , Animais , Inflamação , Macrófagos , Fibroblastos , Anticorpos Neutralizantes/farmacologia , Gânglios Espinais , Hiperalgesia , Proteínas de Transporte , Glicoproteínas
3.
Biol Open ; 12(6)2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37259940

RESUMO

Early phase diabetes is often accompanied by pain sensitization. In Drosophila, the insulin receptor (InR) regulates the persistence of injury-induced thermal nociceptive sensitization. Whether Drosophila InR also regulates the persistence of mechanical nociceptive sensitization remains unclear. Mice with a sensory neuron deletion of the insulin receptor (Insr) show normal nociceptive baselines; however, it is uncertain whether deletion of Insr in nociceptive sensory neurons leads to persistent nociceptive hypersensitivity. In this study, we used fly and mouse nociceptive sensitization models to address these questions. In flies, InR mutants and larvae with sensory neuron-specific expression of RNAi transgenes targeting InR exhibited persistent mechanical hypersensitivity. Mice with a specific deletion of the Insr gene in Nav1.8+ nociceptive sensory neurons showed nociceptive thermal and mechanical baselines similar to controls. In an inflammatory paradigm, however, these mutant mice showed persistent mechanical (but not thermal) hypersensitivity, particularly in female mice. Mice with the Nav1.8+ sensory neuron-specific deletion of Insr did not show metabolic abnormalities typical of a defect in systemic insulin signaling. Our results show that some aspects of the regulation of nociceptive hypersensitivity by the insulin receptor are shared between flies and mice and that this regulation is likely independent of metabolic effects.


Assuntos
Proteínas de Drosophila , Receptor de Insulina , Animais , Camundongos , Feminino , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Nociceptividade/fisiologia , Drosophila/metabolismo , Células Receptoras Sensoriais/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
4.
Immun Ageing ; 20(1): 5, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36698170

RESUMO

BACKGROUND: There is increasing concern that cancer and cancer treatment accelerate aging and the associated cognitive decline. We showed recently that treatment of 9-month-old male mice with cisplatin causes cognitive deficits that are associated with formation of tau deposits in the hippocampus. Here we explored the capacity of mesenchymal stem cells (MSC) given via the nose to prevent age-related brain tau deposits. Moreover, we more closely examined the cellular distribution of this hallmark of accelerated brain aging in response to treatment of 9-month-old female and male mice with cisplatin. RESULTS: We show that cisplatin induces tau deposits in the entorhinal cortex and hippocampus in both sexes. The tau deposits colocalize with syndecan-2. Astrocytes surrounding tau deposits have increased glial fibrillary acidic protein glial fibrillary acidic protein (GFAP) expression. Most of the cisplatin-induced tau deposits were located in microtubule associated protein-2 (MAP-2)+ neurons that were surrounded by aquaporin 4+ (AQP4)+ neuron-facing membrane domains of astrocytes. In addition, some tau deposits were detected in the perinuclear region of GFAP+ astrocytes and in CD31+ endothelial cells. There were no morphological signs of activation of ionized calcium binding adaptor molecule-1+ (Iba-1)+ microglia and no increases in brain cytokine production. Nasal administration of MSC at 48 and 96 hours after cisplatin prevented formation of tau deposits and normalized syndecan-2 and GFAP expression. Behaviorally, cisplatin-induced tau cluster formation was associated with reduced executive functioning and working/spatial memory and nasal administration of MSC at 48 and 96 hours after cisplatin prevented these cognitive deficits. Notably, delayed MSC administration (1 month after cisplatin) also prevented tau cluster formation and cognitive deficits, in both sexes. CONCLUSION: In summary, nasal administration of MSC to older mice at 2 days or 1 month after completion of cisplatin treatment prevents the accelerated development of tau deposits in entorhinal cortex and hippocampus and the associated cognitive deficits. Since MSC are already in clinical use for many other clinical indications, developing nasal MSC administration for treatment of accelerated brain aging and cognitive deficits in cancer survivors should be feasible and would greatly improve their quality of life.

5.
Nat Med ; 29(1): 115-126, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36658425

RESUMO

Although targeting oxidative phosphorylation (OXPHOS) is a rational anticancer strategy, clinical benefit with OXPHOS inhibitors has yet to be achieved. Here we advanced IACS-010759, a highly potent and selective small-molecule complex I inhibitor, into two dose-escalation phase I trials in patients with relapsed/refractory acute myeloid leukemia (NCT02882321, n = 17) and advanced solid tumors (NCT03291938, n = 23). The primary endpoints were safety, tolerability, maximum tolerated dose and recommended phase 2 dose (RP2D) of IACS-010759. The PK, PD, and preliminary antitumor activities of IACS-010759 in patients were also evaluated as secondary endpoints in both clinical trials. IACS-010759 had a narrow therapeutic index with emergent dose-limiting toxicities, including elevated blood lactate and neurotoxicity, which obstructed efforts to maintain target exposure. Consequently no RP2D was established, only modest target inhibition and limited antitumor activity were observed at tolerated doses, and both trials were discontinued. Reverse translational studies in mice demonstrated that IACS-010759 induced behavioral and physiological changes indicative of peripheral neuropathy, which were minimized with the coadministration of a histone deacetylase 6 inhibitor. Additional studies are needed to elucidate the association between OXPHOS inhibition and neurotoxicity, and caution is warranted in the continued development of complex I inhibitors as antitumor agents.


Assuntos
Antineoplásicos , Leucemia Mieloide Aguda , Neoplasias , Animais , Camundongos , Antineoplásicos/efeitos adversos , Inibidores de Histona Desacetilases/uso terapêutico , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/patologia , Neoplasias/patologia , Fosforilação Oxidativa , Humanos
6.
Expert Opin Ther Targets ; 26(9): 811-822, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36424892

RESUMO

INTRODUCTION: The Helping to End Addiction Long-termSM Initiative supports a wide range of programs to develop new or improved prevention and opioid addiction treatment strategies. An essential component of this effort is to accelerate development of non-opioid pain therapeutics. In all fields of medicine, therapeutics development is an arduous process and late-stage translational efforts such as clinical trials to validate targets are particularly complex and costly. While there are plentiful novel targets for pain treatment, successful clinical validation is rare. It is therefore crucial to develop processes whereby therapeutic targets can be reasonably 'de-risked' prior to substantial late-stage validation efforts. Such rigorous validation of novel therapeutic targets in the preclinical space will give potential private sector partners the confidence to pursue clinical validation of promising therapeutic concepts and compounds. AREAS COVERED: In 2020, the National Institutes of Health (NIH) held the Target Validation for Non-Addictive Therapeutics Development for Pain workshop to gather insights from key opinion leaders in academia, industry, and venture-financing. EXPERT OPINION: The result was a roadmap for pain target validation focusing on three modalities: 1) human evidence; 2) assay development in vitro; 3) assay development in vivo.


Assuntos
Transtornos Relacionados ao Uso de Opioides , Dor , Humanos , Dor/tratamento farmacológico , Transtornos Relacionados ao Uso de Opioides/tratamento farmacológico
7.
J Neurosci ; 42(42): 7862-7874, 2022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-36096670

RESUMO

Peripheral neuropathic pain induced by the chemotherapeutic cisplatin can persist for months to years after treatment. Histone deacetylase 6 (HDAC6) inhibitors have therapeutic potential for cisplatin-induced neuropathic pain since they persistently reverse mechanical hypersensitivity and spontaneous pain in rodent models. Here, we investigated the mechanisms underlying reversal of mechanical hypersensitivity in male and female mice by a 2 week treatment with an HDAC6 inhibitor, administered 3 d after the last dose of cisplatin. Mechanical hypersensitivity in animals of both sexes treated with the HDAC6 inhibitor was temporarily reinstated by a single injection of the neutral opioid receptor antagonist 6ß-naltrexol or the peripherally restricted opioid receptor antagonist naloxone methiodide. These results suggest that tonic peripheral opioid ligand-receptor signaling mediates reversal of cisplatin-induced mechanical hypersensitivity after treatment with an HDAC6 inhibitor. Pointing to a specific role for δ opioid receptors (DORs), Oprd1 expression was decreased in DRG neurons following cisplatin administration, but normalized after treatment with an HDAC6 inhibitor. Mechanical hypersensitivity was temporarily reinstated in both sexes by a single injection of the DOR antagonist naltrindole. Consistently, HDAC6 inhibition failed to reverse cisplatin-induced hypersensitivity when DORs were genetically deleted from advillin+ neurons. Mechanical hypersensitivity was also temporarily reinstated in both sexes by a single injection of a neutralizing antibody against the DOR ligand met-enkephalin. In conclusion, we reveal that treatment with an HDAC6 inhibitor induces tonic enkephalin-DOR signaling in peripheral sensory neurons to suppress mechanical hypersensitivity.SIGNIFICANCE STATEMENT Over one-fourth of cancer survivors suffer from intractable painful chemotherapy-induced peripheral neuropathy (CIPN), which can last for months to years after treatment ends. HDAC6 inhibition is a novel strategy to reverse CIPN without negatively interfering with tumor growth, but the mechanisms responsible for persistent reversal are not well understood. We built on evidence that the endogenous opioid system contributes to the spontaneous, apparent resolution of pain caused by nerve damage or inflammation, referred to as latent sensitization. We show that blocking the δ opioid receptor or its ligand enkephalin unmasks CIPN in mice treated with an HDAC6 inhibitor (latent sensitization). Our work provides insight into the mechanisms by which treatment with an HDAC6 inhibitor apparently reverses CIPN.


Assuntos
Antineoplásicos , Neuralgia , Camundongos , Masculino , Feminino , Animais , Desacetilase 6 de Histona/metabolismo , Cisplatino/toxicidade , Receptores Opioides delta , Hiperalgesia/induzido quimicamente , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Antagonistas de Entorpecentes/farmacologia , Ligantes , Analgésicos Opioides/efeitos adversos , Camundongos Endogâmicos C57BL , Neuralgia/induzido quimicamente , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Inibidores de Histona Desacetilases , Niacinamida , Antineoplásicos/toxicidade , Encefalina Metionina , Encefalinas , Anticorpos Neutralizantes
8.
Psychoneuroendocrinology ; 144: 105866, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35853380

RESUMO

PURPOSE: Fatigue is frequently experienced during treatment for cancer and persists for months to years after treatment completion in a subset of patients. The underlying mechanisms remain poorly understood. We postulated that reduced cellular energy metabolism may underlie fatigue in cancer patients and survivors and tested this hypothesis in a sample of patients newly diagnosed with early-stage breast cancer (n = 49) followed for approximately 1 year from before the start of neoadjuvant chemotherapy (NACT) till after treatment completion. METHODS: Patient-reported fatigue was assessed with the Checklist Individual Strength, and blood samples were obtained before, during, and shortly after NACT. A final assessment was completed after surgery and radiation therapy, 4-6 months after NACT. At each study time point, mitochondrial oxygen consumption and glycolytic activity were measured in peripheral blood mononuclear cells (PBMC). Associations of these measures of PBMC energy metabolism with fatigue were assessed in multilevel models. RESULTS: Before NACT, higher mitochondrial oxygen consumption and glycolytic activity were associated with higher fatigue, whereas after completion of all primary treatment, these assessments were associated with lower fatigue. CONCLUSION: These findings suggest that lower cellular energy metabolism after treatment may be a novel target for interventions aimed at preventing or reducing persistent fatigue. Earlier studies investigated the use of supplements for maintaining mitochondrial health during treatment, with mixed results; when proven to be safe, such interventions may be more effective after treatment and in individuals with reduced mitochondrial oxygen consumption rates.


Assuntos
Neoplasias da Mama , Neoplasias da Mama/tratamento farmacológico , Fadiga/complicações , Feminino , Humanos , Leucócitos Mononucleares , Estudos Longitudinais , Sobreviventes
9.
JCI Insight ; 7(5)2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35260535

RESUMO

Understanding the endogenous mechanisms regulating resolution of pain may identify novel targets for treatment of chronic pain. Resolution of chemotherapy-induced peripheral neuropathy (CIPN) after treatment completion depends on CD8+ T cells and on IL-10 produced by other cells. Using Rag2-/- mice lacking T and B cells and adoptive transfer of Il13-/- CD8+ T cells, we showed that CD8+ T cells producing IL-13 were required for resolution of CIPN. Intrathecal administration of anti-IL-13 delayed resolution of CIPN and reduced IL-10 production by dorsal root ganglion macrophages. Depleting local CD206+ macrophages also delayed resolution of CIPN. In vitro, TIM3+CD8+ T cells cultured with cisplatin, apoptotic cells, or phosphatidylserine liposomes produced IL-13, which induced IL-10 in macrophages. In vivo, resolution of CIPN was delayed by intrathecal administration of anti-TIM3. Resolution was also delayed in Rag2-/- mice reconstituted with Havcr2 (TIM3)-/- CD8+ T cells. Our data indicated that cell damage induced by cisplatin activated TIM3 on CD8+ T cells, leading to increased IL-13 production, which in turn induced macrophage IL-10 production and resolution of CIPN. Development of exogenous activators of the IL-13/IL-10 pain resolution pathway may provide a way to treat the underlying cause of chronic pain.


Assuntos
Dor Crônica , Neuralgia , Animais , Linfócitos T CD8-Positivos/metabolismo , Cisplatino , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Hiperalgesia/induzido quimicamente , Interleucina-10/metabolismo , Interleucina-13/metabolismo , Macrófagos/metabolismo , Camundongos , Neuralgia/complicações
10.
Theranostics ; 12(2): 603-619, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34976203

RESUMO

Breast cancer is the most common female malignancy in both the developed and developing world. Doxorubicin is one of the most commonly used chemotherapies for breast cancer. Unfortunately, up to 60% of survivors report long-term chemotherapy-induced cognitive dysfunction (CICD) characterized by deficits in working memory, processing speed and executive function. Currently, no therapeutic standard for treating CICD exists. Here, we hypothesized that treatment with a blood-brain barrier permeable histone deacetylase 6 (HDAC6) inhibitor can successfully reverse long-term doxorubicin-induced cognitive dysfunction. Methods: The puzzle box test and novel object/place recognition test were used to assess cognitive function following a therapeutic doxorubicin dosing schedule in female mice. Mitochondrial function and morphology in neuronal synaptosomes were evaluated using the Seahorse XF24 extracellular flux analyzer and transmission electron microscopy, respectively. Hippocampal postsynaptic integrity was evaluated using immunofluorescence. Hippocampal microglia phenotype was determined using advanced imaging techniques and single-nucleus RNA sequencing. Results: A 14-day treatment with a blood-brain barrier permeable HDAC6 inhibitor successfully reversed long-term CICD in the domains of executive function, working and spatial memory. No significant changes in mitochondrial function or morphology in neuronal synaptosomes were detected. Long-term CICD was associated with a decreased expression of postsynaptic PSD95 in the hippocampus. These changes were associated with decreased microglial ramification and alterations in the microglia transcriptome that suggest a stage 1 disease-associated microglia (DAM) phenotype. HDAC6 inhibition completely reversed these doxorubicin-induced alterations, indicating a restoration of microglial homeostasis. Conclusion: Our results show that decreased postsynaptic integrity and a neurodegenerative microglia phenotype closely resembling stage 1 DAM microglia contribute to long-term CICD. Moreover, HDAC6 inhibition shows promise as an efficacious pharmaceutical intervention to alleviate CICD and improve quality of life of breast cancer survivors.


Assuntos
Disfunção Cognitiva/tratamento farmacológico , Desacetilase 6 de Histona/antagonistas & inibidores , Microglia/efeitos dos fármacos , Piridazinas/farmacologia , Sinapses/efeitos dos fármacos , Animais , Disfunção Cognitiva/induzido quimicamente , Proteína 4 Homóloga a Disks-Large/metabolismo , Relação Dose-Resposta a Droga , Doxorrubicina/antagonistas & inibidores , Feminino , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos
11.
Acta Neuropathol Commun ; 10(1): 11, 2022 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-35093182

RESUMO

Cisplatin is used to combat solid tumors. However, patients treated with cisplatin often develop cognitive impairments, sensorimotor deficits, and peripheral neuropathy. There is no FDA-approved treatment for these neurotoxicities. We investigated the capacity of a highly selective A3 adenosine receptor (AR) subtype (A3AR) agonist, MRS5980, to prevent and reverse cisplatin-induced neurotoxicities. MRS5980 prevented cisplatin-induced cognitive impairment (decreased executive function and impaired spatial and working memory), sensorimotor deficits, and neuropathic pain (mechanical allodynia and spontaneous pain) in both sexes. At the structural level, MRS5980 prevented the cisplatin-induced reduction in markers of synaptic integrity. In-situ hybridization detected Adora3 mRNA in neurons, microglia, astrocytes and oligodendrocytes. RNAseq analysis identified 164 genes, including genes related to mitochondrial function, of which expression was changed by cisplatin and normalized by MRS5980. Consistently, MRS5980 prevented cisplatin-induced mitochondrial dysfunction and decreased signs of oxidative stress. Transcriptomic analysis showed that the A3AR agonist upregulates genes related to repair pathways including NOTCH1 signaling and chromatin modification in the cortex of cisplatin-treated mice. Importantly, A3AR agonist administration after completion of cisplatin treatment resolved cognitive impairment, neuropathy and sensorimotor deficits. Our results highlight the efficacy of a selective A3AR agonist to prevent and reverse cisplatin-induced neurotoxicities via preventing brain mitochondrial damage and activating repair pathways. An A3AR agonist is already in cancer, clinical trials and our results demonstrate management of neurotoxic side effects of chemotherapy as an additional therapeutic benefit.


Assuntos
Agonistas do Receptor A3 de Adenosina/farmacologia , Antineoplásicos/efeitos adversos , Comprometimento Cognitivo Relacionado à Quimioterapia/tratamento farmacológico , Cisplatino/efeitos adversos , Receptor A3 de Adenosina/metabolismo , Memória Espacial/efeitos dos fármacos , Agonistas do Receptor A3 de Adenosina/uso terapêutico , Animais , Feminino , Masculino , Camundongos , Atividade Motora/efeitos dos fármacos , Neurônios/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Dor/metabolismo
12.
Adv Healthc Mater ; 11(8): e2102153, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35007407

RESUMO

Cognitive deficits (chemobrain) and peripheral neuropathy occur in ∼75% of patients treated for cancer with chemotherapy and persist long-term in >30% of survivors. Without preventive or curative interventions and with increasing survivorship rates, the population debilitated by these neurotoxicities is rising. Platinum-based chemotherapeutics, including cisplatin, induce neuronal mitochondrial defects leading to chemobrain and neuropathic pain. This study investigates the capacity of nasally administered mesenchymal stem cell-derived mitochondria coated with dextran-triphenylphosphonium polymer (coated mitochondria) to reverse these neurotoxicities. Nasally administered coated mitochondria are rapidly detectable in macrophages in the brain meninges but do not reach the brain parenchyma. The coated mitochondria change expression of >2400 genes regulating immune, neuronal, endocrine and vascular pathways in the meninges of mice treated with cisplatin. Nasal administration of coated mitochondria reverses cisplatin-induced cognitive deficits and resolves neuropathic pain at a >55-times lower dose compared to uncoated mitochondria. Reversal of these neuropathologies is associated with resolution of cisplatin-induced deficits in myelination, synaptosomal mitochondrial integrity and neurogenesis. These findings demonstrate that nasally administered coated mitochondria promote resolution of chemobrain and peripheral neuropathy, thereby identifying a novel facile strategy for clinical application of mitochondrial donation and treating central and peripheral nervous system pathologies by targeting the brain meninges.


Assuntos
Antineoplásicos , Comprometimento Cognitivo Relacionado à Quimioterapia , Neuralgia , Animais , Antineoplásicos/metabolismo , Cisplatino/farmacologia , Humanos , Meninges/metabolismo , Camundongos , Mitocôndrias
13.
Brain Behav Immun ; 100: 287-296, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34915156

RESUMO

Chemotherapy-induced peripheral neuropathy (CIPN) impacts a growing number of cancer survivors and treatment options are limited. Histone deacetylase 6 (HDAC6) inhibitors are attractive candidates because they reverse established CIPN and may enhance anti-tumor effects of chemotherapy. Before considering clinical application of HDAC6 inhibitors, the mechanisms underlying reversal of CIPN need to be identified. We showed previously that deletion of Hdac6 from sensory neurons did not prevent cisplatin-induced mechanical hypersensitivity, while global deletion of Hdac6 was protective, indicating involvement of HDAC6 in other cell types. Here we show that local depletion of MRC1 (CD206)-positive macrophages without affecting microglia by intrathecal administration of mannosylated clodronate liposomes reduced the capacity of an HDAC6 inhibitor to reverse cisplatin-induced mechanical hypersensitivity. The HDAC6 inhibitor increased spinal cord Il10 mRNA and this was M2-macrophage dependent. Intrathecal administration of anti-IL-10 antibody or genetic deletion of Il10 prevented resolution of mechanical hypersensitivity. Genetic deletion of the IL-10 receptor from Advillin+ neurons prevented resolution of mechanical hypersensitivity in mice treated with the HDAC6 inhibitor. These findings indicate that treatment with an HDAC6 inhibitor increases macrophage-derived IL-10 signaling to IL-10 receptors on Advillin+ sensory neurons to resolve mechanical hypersensitivity. Cisplatin decreases mitochondrial function in sensory axons, and HDAC6 inhibition can promote axonal transport of healthy mitochondria. Indeed, the HDAC6 inhibitor normalized cisplatin-induced tibial nerve mitochondrial deficits. However, this was independent of macrophages and IL-10 signaling. In conclusion, our findings indicate that administration of an HDAC6 inhibitor reverses cisplatin-induced mechanical hypersensitivity through two complementary pathways: macrophage HDAC6 inhibition to promote IL-10 production and IL-10 signaling to DRG neurons, and neuronal HDAC6 inhibition to restore axonal mitochondrial health.


Assuntos
Antineoplásicos , Desacetilase 6 de Histona , Inibidores de Histona Desacetilases , Hiperalgesia , Animais , Antineoplásicos/efeitos adversos , Desacetilase 6 de Histona/antagonistas & inibidores , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Hiperalgesia/induzido quimicamente , Hiperalgesia/tratamento farmacológico , Interleucina-10/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
15.
Sci Transl Med ; 13(619): eabj7152, 2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34757809

RESUMO

The immune system and the peripheral sensory nervous system communicate through hardwired and humoral routes using shared mediators and receptors. On the basis of studies on pain sensitivity in rodents, the immune system can be viewed as both friend and foe. T cells and macrophages enhance pain via proinflammatory mediators and promote pain resolution via anti-inflammatory mediators and endogenous opioids.


Assuntos
Peptídeos Opioides , Dor , Humanos , Macrófagos , Sistema Nervoso Periférico , Linfócitos T
16.
Biochem Pharmacol ; 192: 114688, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34274354

RESUMO

Signal Transducer and Activator of Transcription (STAT) 3 emerged rapidly as a high-value target for treatment of cancer. However, small-molecule STAT3 inhibitors have been slow to enter the clinic due, in part, to serious adverse events (SAE), including lactic acidosis and peripheral neuropathy, which have been attributed to inhibition of STAT3's mitochondrial function. Our group developed TTI-101, a competitive inhibitor of STAT3 that targets the receptor pY705-peptide binding site within the Src homology 2 (SH2) domain to block its recruitment and activation. TTI-101 has shown target engagement, no toxicity, and evidence of clinical benefit in a Phase I study in patients with solid tumors. Here we report that TTI-101 did not affect mitochondrial function, nor did it cause STAT3 aggregation, chemically modify STAT3 or cause neuropathic pain. Instead, TTI-101 unexpectedly suppressed neuropathic pain induced by chemotherapy or in a spared nerve injury model. Thus, in addition to its direct anti-tumor effect, TTI-101 may be of benefit when administered to cancer patients at risk of developing chemotherapy-induced peripheral neuropathy (CIPN).


Assuntos
Hiperalgesia/tratamento farmacológico , Naftóis/uso terapêutico , Neuralgia/tratamento farmacológico , Fosforilação Oxidativa/efeitos dos fármacos , Fator de Transcrição STAT3/antagonistas & inibidores , Sulfonamidas/uso terapêutico , Tato , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Humanos , Hiperalgesia/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Naftóis/farmacologia , Neuralgia/metabolismo , Fator de Transcrição STAT3/metabolismo , Sulfonamidas/farmacologia
17.
Pain ; 162(10): 2599-2612, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33872235

RESUMO

ABSTRACT: Chemotherapy-induced peripheral neuropathy (CIPN) and chemotherapy-induced cognitive impairments (CICI) are common, often severe neurotoxic side effects of cancer treatment that greatly reduce quality of life of cancer patients and survivors. Currently, there are no Food and Drug Administration-approved agents for the prevention or curative treatment of CIPN or CICI. The dual leucine zipper kinase (DLK) is a key mediator of axonal degeneration that is localized to axons and coordinates the neuronal response to injury. We developed a novel brain-penetrant DLK inhibitor, IACS'8287, which demonstrates potent and highly selective inhibition of DLK in vitro and in vivo. Coadministration of IACS'8287 with the platinum derivative cisplatin prevents mechanical allodynia, loss of intraepidermal nerve fibers in the hind paws, cognitive deficits, and impairments in brain connectivity in mice, all without interfering with the antitumor activity of cisplatin. The protective effects of IACS'8287 are associated with preservation of mitochondrial function in dorsal root ganglion neurons and in brain synaptosomes. In addition, RNA sequencing analysis of dorsal root ganglia reveals modulation of genes involved in neuronal activity and markers for immune cell infiltration by DLK inhibition. These data indicate that CIPN and CICI require DLK signaling in mice, and DLK inhibitors could become an attractive treatment in the clinic when coadministered with cisplatin, and potentially other chemotherapeutic agents, to prevent neurotoxicities as a result of cancer treatment.


Assuntos
Antineoplásicos , Disfunção Cognitiva , Doenças do Sistema Nervoso Periférico , Animais , Antineoplásicos/toxicidade , Modelos Animais de Doenças , Humanos , Zíper de Leucina , Camundongos , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Doenças do Sistema Nervoso Periférico/prevenção & controle , Qualidade de Vida
18.
Theranostics ; 11(7): 3109-3130, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33537077

RESUMO

Up to seventy-five percent of patients treated for cancer suffer from cognitive deficits which can persist for months to decades, severely impairing quality of life. Although the number of cancer survivors is increasing tremendously, no efficacious interventions exist. Cisplatin, most commonly employed for solid tumors, leads to cognitive impairment including deficits in memory and executive functioning. We recently proposed deficient neuronal mitochondrial function as its underlying mechanism. We hypothesized nasal administration of mitochondria isolated from human mesenchymal stem cells to mice, can reverse cisplatin-induced cognitive deficits. Methods: Puzzle box, novel object place recognition and Y-maze tests were used to assess the cognitive function of mice. Immunofluorescence and high-resolution confocal microscopy were employed to trace the nasally delivered mitochondria and evaluate their effect on synaptic loss. Black Gold II immunostaining was used to determine myelin integrity. Transmission electron microscopy helped determine mitochondrial and membrane integrity of brain synaptosomes. RNA-sequencing was performed to analyse the hippocampal transcriptome. Results: Two nasal administrations of mitochondria isolated from human mesenchymal stem cells to mice, restored executive functioning, working and spatial memory. Confocal imaging revealed nasally delivered mitochondria rapidly arrived in the meninges where they were readily internalized by macrophages. The administered mitochondria also accessed the rostral migratory stream and various other brain regions including the hippocampus where they colocalized with GFAP+ cells. The restoration of cognitive function was associated with structural repair of myelin in the cingulate cortex and synaptic loss in the hippocampus. Nasal mitochondrial donation also reversed the underlying synaptosomal mitochondrial defects. Moreover, transcriptome analysis by RNA-sequencing showed reversal of cisplatin-induced changes in the expression of about seven hundred genes in the hippocampus. Pathway analysis identified Nrf2-mediated response as the top canonical pathway. Conclusion: Our results provide key evidence on the therapeutic potential of isolated mitochondria - restoring both brain structure and function, their capability to enter brain meninges and parenchyma upon nasal delivery and undergo rapid cellular internalization and alter the hippocampal transcriptome. Our data identify nasal administration of mitochondria as an effective strategy for reversing chemotherapy-induced cognitive deficits and restoring brain health, providing promise for the growing population of both adult and pediatric cancer survivors.


Assuntos
Comprometimento Cognitivo Relacionado à Quimioterapia/terapia , Mitocôndrias/metabolismo , Mitocôndrias/transplante , Administração Intranasal/métodos , Animais , Encéfalo/patologia , Comprometimento Cognitivo Relacionado à Quimioterapia/patologia , Cisplatino/efeitos adversos , Cisplatino/farmacologia , Cognição , Disfunção Cognitiva/patologia , Disfunção Cognitiva/terapia , Modelos Animais de Doenças , Hipocampo/patologia , Humanos , Memória , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/patologia
19.
Trends Mol Med ; 27(4): 302-313, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33431239

RESUMO

Despite successful research efforts aimed at understanding pain mechanisms, there is still no adequate treatment for many patients suffering from chronic pain. The contribution of neuroinflammation to chronic pain is widely acknowledged. Here, we summarize findings indicating that T cells play a key role in the suppression of pain. An active contribution of the immune system to resolution of pain may explain why immunosuppressive drugs are often not sufficient to control pain. This would also imply that dysregulation of certain immune functions promote transition to chronic pain. Conversely, stimulating the endogenous immune-mediated resolution pathways may provide a potent approach to treat chronic pain.


Assuntos
Dor , Linfócitos T/imunologia , Dor Crônica/imunologia , Dor Crônica/fisiopatologia , Dor Crônica/terapia , Humanos , Doenças Neuroinflamatórias/imunologia , Doenças Neuroinflamatórias/fisiopatologia , Dor/imunologia , Dor/fisiopatologia
20.
Brain Behav Immun ; 93: 43-54, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33316379

RESUMO

Chemotherapy-induced peripheral neuropathy (CIPN) is one of the most frequently reported adverse effects of cancer treatment. CIPN often persists long after treatment completion and has detrimental effects on patient's quality of life. There are no efficacious FDA-approved drugs for CIPN. We recently demonstrated that nasal administration of mesenchymal stem cells (MSC) reverses the cognitive deficits induced by cisplatin in mice. Here we show that nasal administration of MSC after cisplatin- or paclitaxel treatment- completely reverses signs of established CIPN, including mechanical allodynia, spontaneous pain, and loss of intraepidermal nerve fibers (IENF) in the paw. The resolution of CIPN is associated with normalization of the cisplatin-induced decrease in mitochondrial bioenergetics in DRG neurons. Nasally administered MSC enter rapidly the meninges of the brain, spinal cord and peripheral lymph nodes to promote IL-10 production by macrophages. MSC-mediated resolution of mechanical allodynia, recovery of IENFs and restoration of DRG mitochondrial function critically depends on IL-10 production. MSC from IL-10 knockout animals are not capable of reversing the symptoms of CIPN. Moreover, WT MSC do not reverse CIPN in mice lacking IL-10 receptors on peripheral sensory neurons. In conclusion, only two nasal administrations of MSC fully reverse CIPN and the associated mitochondrial abnormalities via an IL-10 dependent pathway. Since MSC are already applied clinically, we propose that nasal MSC treatment could become a powerful treatment for the large group of patients suffering from neurotoxicities of cancer treatment.


Assuntos
Antineoplásicos , Células-Tronco Mesenquimais , Doenças do Sistema Nervoso Periférico , Administração Intranasal , Animais , Antineoplásicos/toxicidade , Modelos Animais de Doenças , Humanos , Camundongos , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/terapia , Qualidade de Vida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...